Differentially Private Publication of Data on Wages and Job Mobility

Ian M. Schmutte Department of Economics University of Georgia

60th ISI World Statistics Congree Rio de Janeiro 28 July 2015

- Question for data providers
 - "How much privacy loss must be incurred to increase accuracy"
- Answer: Differential privacy
 - Privacy loss measured by parameter ϵ
 - Formal proofs yield marginal cost of privacy
 - ... in foregone accuracy

- Can existing methods be applied to generate interesting DP synthetic data?
- Are the resulting synthetic data useful?
- What is the actual cost of increasing privacy?

Roadmap

- Application: Data on job-to-job transitions
 - by employer-specific wage premium
 - and residual wages
 - from Brazil (RAIS)
- Generate DP synthetic data using
 - Multiplicative Weights Exponential Mechanism (MWEM) algorithm (Hardt et al. 2012)
 - *e*-differentially private
 - formal accuracy guarantee
- Results:
 - Empirical accuracy far superior to theoretical guarantee
 - Synthetic data effective for training queries
 - pretty poor out of sample

Data

Longitudinal employer-employee data for Brazil

- Relação Anual de Informações Sociais (RAIS)
- years 2003–2010
- collected from plant managers for program administration
- covers all formal-sector jobs (50 million per year)

Longitudinal employer-employee data for Brazil

data items all reported by employer:

- job characteristics:
 - wage, hours, occupation, date of hire
- > plant characteristics: industry, size, location ...
- worker characteristics: age, education, race, sex ...

Full Data:

- All RAIS jobs in plants with more than 1 employee
- ► 358,894,761 job-year observations

Earnings Decomposition

$$\ln w_{it} = x_{it}\beta + \theta_i + \psi_{G(i,t)} + \varepsilon_{it}$$

- $\ln w_{it}$, is the log hourly wage
- *x_{it}* are observed time-varying controls: experience and year effects
- ▶ indicator function G(i,t) = g if worker i was employed in g in year t
- ▶ ψ_{G(i,t)} measures unobserved employer-specific determinants of compensation
- θ_i captures unobserved worker-specific determinants of compensation

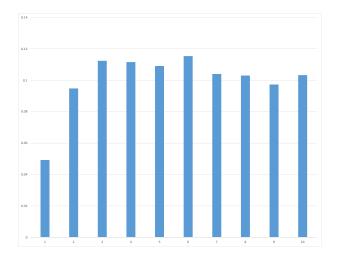
Summary of the components of log wage

			Correlation				
	Mean	Std. Dev.	Log Wage	$X\beta$	θ	ψ	ε
Log Wage	1.30	0.760	1				
Time-varying characteristics	1.30	0.377	0.243	1			
Worker effect	-0.00	0.502	0.599	-0.476	1		
EstabOccup. effect	-0.00	0.397	0.800	0.118	0.333	1	
Residual	0.00	0.196	0.258	-0.000	0.000	0.000	1

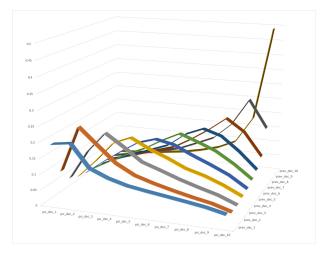
Analysis of Job Mobility

- Compute average residual on each job
 - "match effect"
- Restrict sample to observations with a job change
- Discretize employer effects to deciles
- Five percent simple random sample
- Final dataset has three categorical variables
 - origin employer type (10 deciles, plus non-employment)
 - destination employer type (10 deciles)
 - match type (10 deciles)
- Domain *D* has cardinality |D|=1,100.

Job-to-Job Mobility: True Data



Job-to-Job Mobility: True Data



Methods

Databases, Histograms, and Queries

- ▶ *B* database held by custodian with *n* entries
- each entry is iid draw from (discrete, finite) domain $D = D_1 \times \ldots \times D_K$
- *H* is a histogram representing *B*, $H \in R^{|D|}$
- Queries
 - A *linear query* is any database query that can be represented by a vector in $R^{|D|}$
 - Query answer: a(q) = q'H

Differential Privacy

Definition

(Differential Privacy) Let M be a random mechanism that maps histograms, H, to distributions over an output space, R.

M provides ϵ -differential privacy if

- for every $S \subset R$, and
- ► for all histograms H and K where $||H K|| \le 1$ $\Pr[M(H) \in S] \le \exp(\epsilon) \Pr[M(K) \in S].$

That is:

$$\frac{\Pr[M(H) \in S]}{\Pr[M(K) \in S]} \le \exp(\epsilon) \tag{1}$$

MWEM Mechanism – Hardt, Ligett, McSherry 2012 (NIPS)

Algorithm Multiplicative Weights Exponential Mechanism

- **Input:** Data set, *H*, over a universe, *D*; a set *Q* of linear queries; total number of iterations $T \in N$; privacy parameter $\epsilon > 0$. The number of records in *H* is *n*.
- 1. Initialize the synthetic histogram, K_0 , as n times the uniform distribution.
- 2. for $t \leftarrow 1$ to T
- 3. Exponential Mechanism Step: Select a query, $q_t \in Q$ using the Exponential Mechanism parameterized with $\epsilon/2T$ and score function

$$s_t(H,q) = |q'K_{t-1} - q'H|$$
 (2)

MWEM Mechanism – Hardt, Ligett, McSherry 2012 (NIPS) II

$$K_t \propto K_{t-1} \times \exp(q_t \times \left(m_t - q'_t K_{t-1}\right)/2n) \quad (3)$$

6. **Output:** *K* as the simple average across all K_t for t < T.

Theoretical Guarantees

Theorem

The MWEM satisfies ϵ *-differential privacy.*

Theorem

Given any dataset, H, with n records, together with a set of queries, Q, number of iterations T, and $\epsilon > 0$, with probability at least q - 2T/|Q|, MWEM produces synthetic histogram K that satisfies

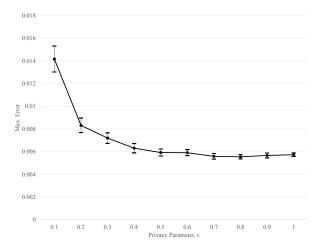
$$max_{q\in Q}|q'H - q'K| \le 2n\sqrt{\frac{\log|D|}{T}} + \frac{10T\log|Q|}{\epsilon}.$$
 (4)

Evaluation

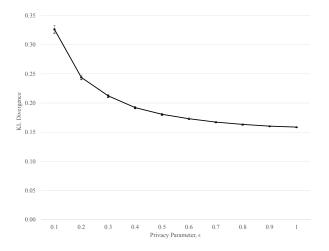
Evaluation Protocol

- Query set, Q: all first, second, third-order marginals
- ▶ Iterations, *T*: 300
- Replications: 3

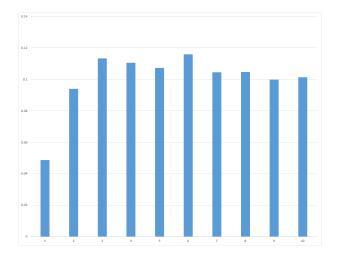
Maximum Error



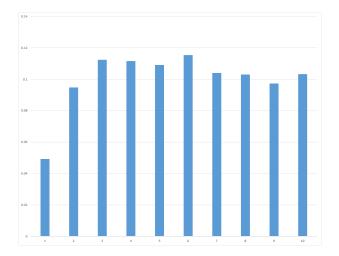
KL Divergence



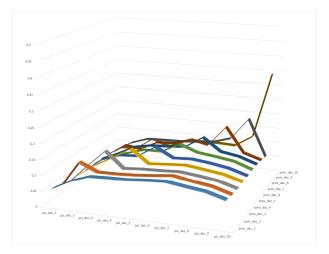
Synthetic Job-to-Job Transitions



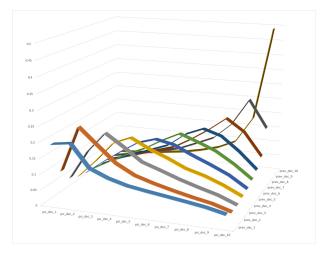
True Job-to-Job Transitions



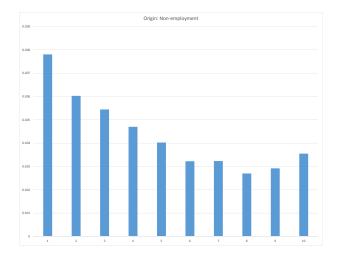
Synthetic Job-to-Job Transitions



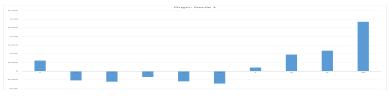
True Job-to-Job Transitions



Average Residual by Transition Cell: True Data



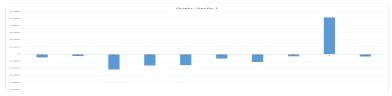
Average Residual by Transition Cell: True Data



(a) Origin Employer Decile 1

(b) Origin Employer Decile 5

Average Residual by Transition Cell: Synthetic Data



(c) Origin Employer Decile 1

(d) Origin Employer Decile 5